Normalized mutual information based registration using k-means clustering and shading correction
نویسندگان
چکیده
In this paper the influence of intensity clustering and shading correction on mutual information based image registration is studied. Instead of the generally used equidistant re-binning, we use k-means clustering in order to achieve a more natural binning of the intensity distribution. Secondly, image inhomogeneities occurring notably in MR images can have adverse effects on the registration. We use a shading correction method in order to reduce these effects. The method is validated on clinical MR, CT and PET images, as well as synthetic MR images. It is shown that by employing clustering with inhomogeneity correction the number of misregistrations is reduced without loss of accuracy thus increasing robustness as compared to the standard non-inhomogeneity corrected and equidistant binning based registration.
منابع مشابه
Using K-means Clustering and MI for Non-rigid Registration of MRI and CT
Mutual information (MI) based registration methods are susceptible to the variation of the intensity of the image. We present a multi-modality MRI-CT non-rigid registration method by combining Kmeans clustering technique with mutual information. This method makes use of K-means clustering to determine variant bin sizes in CT image. The resulting clustered (labeled) CT image is non-rigidly regis...
متن کاملOptimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کاملWeighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering
Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملNormalized gradient fields for nonlinear motion correction of DCE-MRI time series
Dynamic MR image recordings (DCE-MRI) of moving organs using bolus injections create two different types of dynamics in the images: (i) spatial motion artifacts due to patient movements, breathing and physiological pulsations that we want to counteract and (ii) signal intensity changes during contrast agent wash-in and wash-out that we want to preserve. Proper image registration is needed to co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image analysis
دوره 10 3 شماره
صفحات -
تاریخ انتشار 2006